Name

Student's No.

Delegation

Student's Report for Practical Problem I

1. Identification of unknown solutions

<table>
<thead>
<tr>
<th>labels of solutions</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>chemical formulae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Equations for chemical reactions taking place in each experimental step
 step one (with the first reagent you choose)

 step two (with the second reagent you choose)

 step three (with the third reagent you choose)

If you proceed with more steps, write the corresponding chemical equations continuously.
Name

Student's No.

Delegation

Student's Report for Practical Problem II

1. Equations for the main chemical reactions having taken place in the preparation of Cu(OH)$_2$.

2. Mass of Cu(gly)$_2$·xH$_2$O = (g)

Percent yield

The expression for calculation
Name

Student's No.

Delegation

Student's Report for Practical Problem III

1. Standardization of Na$_2$S$_2$O$_3$ Solution
1) The two equations for chemical reactions taking place during the standardization of Na$_2$S$_2$O$_3$.

i

ii.

(2) Volumes of Na$_2$S$_2$O$_3$ Solution

$V_1 = \text{cm}^3$

$V_3 = \text{cm}^3$

$V_{\text{mean value}} = \text{cm}^3$

(3) Concentration of Na$_2$S$_2$O$_3$ = mol.dm$^{-3}$

Expression for the calculation:

2. Determination of Cu(II) in Cu(gly)$_2$·xH$_2$O
(1) Chemical equation for the reaction between Cu$^{2+}$ and I$^-$

(2) Mass of Cu(gly)$_2$·xH$_2$O = g

3) Volumes of Na$_2$S$_2$O$_3$ solution

$V_1 = \text{cm}^3$

$V_2 = \text{cm}^3$

$V_3 = \text{cm}^3$
$V(\text{mean value}) = \text{cm}^3$

(4) Mass % of Cu(II) in Cu(gly)$_2 \cdot x$H$_2$O =
Expression for the calculation:

(5) X Value in Cu(gly)$_2 \cdot x$H$_2$O

$X = \text{(with precision of 0.01)}$

Expression for the calculation: