

Preparatory Problems

Preparatory Problems

5 - 14 JULY

Preparatory Problems

34th International Chemistry Olympiad

Editors: Binne Zwanenburg and René Ruinaard

ISBN 90 806903 1 7

Copyright © 2001 by 34th International Chemistry Olympiad

The copyright holders waive their copyright on this publication to the extent that teachers may reproduce material taken from the publication for use with their students for the purpose of solving chemical problems. This publication is not for sale and may not be reproduced for lending, hire or sale.

Printed and bound in The Netherlands by Scholma Druk, Bedum

34th International Chemistry Olympiad

Nijenborgh 4 9747 AG Groningen, The Netherlands telephone +31 50 363 46 15 fax +31 50 363 45 00 e-mail icho34@chem.rug.nl www.chem.rug.nl/icho34

Contents

Preface			v
Scientific	c Committee		VI
Syllabus	for the Internation	onal Chemistry Olympiad	VII
Theoretic	cal Problems		4
	Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 Problem 7 Problem 7 Problem 9 Problem 10 Problem 10 Problem 11 Problem 12 Problem 13 Problem 13 Problem 14 Problem 15 Problem 16 Problem 17 Problem 18 Problem 19 Problem 20 Problem 21 Problem 22 Problem 23	Production of Ammonia Myoglobin for Oxygen Storage Lactose Chemistry Atom Mobility (Dynamics) in Organic Compounds Towards Green Chemistry: The E-factor Selective Solubility UV-spectrometry as an Analytical Tool Reaction Kinetics Bonding and Bond Energies The Nature of Phosphorus Optical Purity Polylactic Acid A Chemical Puzzle Delft Blue and Vitamin B 12 Synthesis of a Local Anaesthetic Structure of Peptides Ribonuclease Enzyme Kinetics Dendrimers: Tree-like Macromolecules Carvone Electrochemical Energy Conversion Micelles A Ceramic Hard Coating	1
Practical	Problems		22
	Safety rules Hints for the pract Problem 24 Problem 25 Problem 26 Problem 27	ical exam Preparation of 1,4-di- <i>tert</i> -butyl-2,5-dimethoxybenzene; an example of a Friedel-Crafts alkylation. Titration of maleic acid (<i>cis</i> -butenedioic acid). Preparation of 2,3-diphenylquinoxaline; an example of Schiff base formation leading to an aromatic compound. Preparation of 3-(4-methoxyphenyl)propanoic acid; an example of a catalytic transfer-bydrogenation	

	or a catalytic transfer flydrogenation.
Problem 28	Complexometric titration; an example of metal ion determination
	using complexometry.
Problem 29	Enzymatic hydrolysis of N-acetyl-alanine; an example of an environmentally benign process.

Answers to the Problems

Preface

This booklet contains a series of preparatory problems for the International Chemistry Olympiad in 2002. Most of the problems refer to level 3 mentioned in the Syllabus of the International Chemistry Olympiad. Topics from various areas of chemistry are covered. The scientific committee selected problems which reflect the relevance of modern chemistry and which receive current interest. Of course, problems concerning the understanding of chemistry in qualitative and quantitative terms are included as well.

While working on the problems students will encounter, for example, the chemistry of lactose, which is the by-product of Dutch cheese making, how whales manage to stay under water for a considerable length of time, how the color of Delft blue pottery can be understood, how a bio-compatible polymer can be made from lactic acid, how modern spectroscopy is applied, how the structure of the natural product carvone can be unravelled, how aspects of green chemistry can be treated more quantitatively, how detergents aggregate to give micelles, how a hard coating can be made, and how fuel cells can produce electricity.

In the practical problems microscale equipment will be used. The synthesis of some organic compounds, the use of thin-layer chromatography, the quantitative analysis using spectroscopic methods and the use of enzymes are illustrative for this section.

We recommend that students try to withstand the temptation to look too early at the answers which are included in this booklet. Students will benefit most from these preparatory problems when they try to solve the problems on their own.

It should be emphasized that in answering the questions concise but clear answers must be given. During the Olympiad answer boxes will be provided and the students must give the answers in that box. For two problems such answer boxes have been included in this booklet.

We hope that students and their teachers will consider the problems described in this booklet as a stimulus for the preparation for the competition during the Olympiad in July 2002.

We wish you good luck and hope to welcome you in Groningen.

Acknowledgement

We thank the members of the Scientific Committee for their invaluable contribution in making suitable and relevant problems for the Olympiad in The Netherlands. The contents of this booklet is the result of real teamwork. We owe a special word of thanks to Peter de Groot, Dolf Witte, Ton van Weerd and Wout Davids who served as consulting members of the committee. Their critical comments and constructive remarks were highly appreciated. We also thank Dr. Gordon J.F. Chittenden for proof-reading the manuscript and correcting the English.

Binne Zwanenburg Chairman René Ruinaard Secretary

Scientific Committee of the 34th International Chemistry Olympiad

Chairperson: Prof.dr. B. Zwanenburg

Section Theory:

Prof.dr.ir. H. van Bekkum Prof.dr. H.P.J. Bloemers Prof.dr. F.B. van Duijneveldt Prof.dr. J.B.F.N. Engberts Dr. G.A. van der Marel Prof.dr. E.W. Meijer Prof.dr. A. Meijerink Prof.dr. A. Oskam Prof.dr. J. Schoonman Prof.dr. A.J. Schouten Ms. Prof.dr. N.H. Velthorst Prof.ir. J.A. Wesselingh

Section Practical:

Prof.dr. J.F.J. Engbersen Dr. E. Joling Dr. A.J.H. Klunder Dr. A.J. Minnaard Dr. J.A.J.M. Vekemans Dr. W.H. de Wolf University of Nijmegen

Delft University of Technology University of Nijmegen University of Utrecht University of Groningen University of Leiden Eindhoven University of Technology University of Utrecht University of Amsterdam Delft University of Technology University of Groningen Free University, Amsterdam University of Groningen

Twente University of Technology University of Amsterdam University of Nijmegen University of Groningen Eindhoven University of Technology Free University, Amsterdam

<u>Secretariat:</u> Dr. R. Ruinaard J. Brinkhorst Ms. M.V. Versteeg University of Nijmegen

Address for correspondence: Prof.dr. B. Zwanenburg Department of Organic Chemistry, NSR Centre for Molecular Structure, Design and Synthesis, University of Nijmegen Toernooiveld 1, 6525 ED Nijmegen, The Netherlands Phone: +31.24.3653159 Fax: +31.24.3653393 E-mail: ich034@sci.kun.nl / zwanenb@sci.kun.nl

Syllabus of the International Chemistry Olympiad

Level 1: These topics are included in the overwhelming majority of secondary school chemistry programs and need not to be mentioned in the preparatory problems.

Level 2: These topics are included in a substantial number of secondary school programs and maybe used without exemplification in the preparatory problems.

Level 3: These topics are not included in the majority of secondary school programs and can only be used in the competition if examples are given in the preparatory problems.

1 INORGANIC CHEMISTRY

1.1 Ele	ctronic configuration of atoms and i	ons
1.1.1	main groups	1
1.1.2	transition metals	2
1.1.3	lanthanide and actinide metals	3
1.1.4	Pauli exclusion principle	1
1.1.5	Hund's rule	1
1.2 Tre	nds in the periodic table (main grou	os)
1.2.1	electronegativity	1
1.2.2	electron affinity	2
1.2.3	first ionisation energy	2
1.2.4	atomic size	1
1.2.5	ionic size	2
1.2.6	highest oxidation number	1
1.3 Tre	nds in physical properties (main gro	ups)
1.3.1	melting point	1
1.3.2	boiling point	1
1.3.3	metal character	1
1.3.4	magnetic properties	2
1.3.5	thermal properties	3
1.3.6	law of Dulong and Petit	1
1.3.7	electrical conductivity	3
1.4 Stru	uctures	
1.4.1	simple molecular structures	2
1.4.2	simple molecular structures with a	
	central atom exceeding the octet rule	3
1.4.3	ionic crystal structures	3
1.4.4	metal structures	3
1.4.5	stereochemistry	3
1.5 Nor	nenclature	
1.5.1	oxidation number	1
1.5.2	main group compounds	1
1.5.3	transition metal compounds	1
1.5.4	simple metal complexes	2
1.5.5	multicenter metal complexes	3

1.6 Che 1.6.1 1.6.2 1.6.3 1.6.4 1.6.5 1.6.6	mical calculations balancing equations stoichiometric calculations mass and volume relations empirical formula Avogadro's number concentration calculations	1 1 1 1
1.7 Isot 1.7.1 1.7.2 1.7.3	opes counting of nucleons radioactive decay nuclear reactions (alpha, beta,	1 1
	gamma,neutrino)	2
1.8 Natu 1.8.1 1.8.2 1.8.3	u ral cycles nitrogen oxygen carbon	2 2 2
1.9 s-Bl	ock	
1.9.1	Products of reactions of group I and II	
1.9.1.1 1.9.1.2 1.9.1.3 1.9.2	with water, basicity of the products with halogens with oxygen heavier s-block elements are more reactive	1 1 2 1
1.9.3	lithium combines with H_2 and N_2 forming LiH and Li ₃ N	2
1.10 p-E	Block	
1.10.1	stoichiometry of simplest non-metal hydrides properties of metal hydrides	1 3
1.10.3	acid-base properties of CH_4 , NH_3 , H_2O , H_2S , and hydrogen balides HX	1
1.10.4	NO reacts with O_2 to form NO_2	1

- 1.10.5 equilibrium between NO_2 and N_2O_4
- Groningen | The Netherlands | 5 14 July 2002

1.10.6	products of reaction of NO_2 with water	1
1.10.7	HNO_2 and its salts are reductants	1
1.10.8	HNO ₃ and its salts are oxidants	1
1.10.9	N_2H_4 is a liquid and reluctant 3	2
1.10.10	existence of actus like $\Pi_2 \Pi_2 \Omega_2$, $\Pi \Pi_3$	3
1.10.11	metals and reductants	З
1.10.12	reaction of $Na_2S_2O_3$ with jodine	2
1.10.13	other thioacids, polyacids, peroxoacids	3
1.10.14	B(III), AI(III), Si(IV), P(V), S(IV), S(VI),	
	O(-II), F(-I), CI(-I), CI(I), CI(III), CI(V),	
	CI(VII) are normal oxidation states of	
	2nd and 3rd row elements in	
	compounds with halogens and in	
4 4 9 4 5	oxoanions	1
1.10.15	compounds of non-metals with other	2
1 10 16	UXIDATION States	3
1.10.10	Sn(II) Ph(II) and Bi(III)	2
1 10 17	products of reactions of non-metal	2
	oxides with water and stoichiometry	
	of resulting acids	1
1.10.18	reactions of halogens with water	2
1.10.19	reactivity and oxidizing power of	
	halogens decrease from F_2 to I_2	1
1.10.20	differences of chemistry between	_
	row 4 and row 3 elements	3
111 40	Plank	
1.11 U-E	common ovidation states of the	
1.11.1	common d-block metals are Cr(III)	
	Cr(VI) $Mn(II)$ $Mn(IV)$ $Mn(VII)$ $Fe(II)$	
	Fe(III), Co(II), Ni(II), Cu(I), Cu(II),	
	Ag(I), Zn(II), Hg(I), and Hg(II)	1
1.11.2	colors of the listed common ions in	
	aqueous solutions	2
1.11.3	other oxidation states and chemistry	
	of other d-block elements	3
1.11.4	Cr, Mn, Fe, Co, Ni, Zn dissolve in	
1 1 1 5	dilute HCI, Cu, Ag, Hg do not dissolve	1
1.11.0	products of dissolution are (2+) cations	2
1 11 7	$Cr(OH)_{2}$ and $Zn(OH)_{2}$ are amphoteric	2
	other common hydroxides are not	1
1.11.8	MnO_4 , CrO_4^2 , $Cr_2O_7^2$ are strong	-
	oxidants	1
1.11.9	products of reduction of MnO ₄	
	depending on pH	2
1.11.10	polyanions other than $Cr_2O_7^{2-1}$	3
1.12 Otl	her inorganic problems	
1.12.1	Industrial production of H_2SO_4 , NH_3 ,	1
4 4 9 9		1
1122	Na ₂ CO ₃ , Na, Cl ₂ , NaOH, chemistry of lanthanides and actinides	3
1.12.2	chemistry of lanthanides and actinides chemistry of noble gases	3 3
1.12.2 1.12.3	chemistry of lanthanides and actinides chemistry of noble gases	3 3
1.12.2 1.12.3 2. PHY	Sical Chemistry of noble gases	3 3
1.12.2 1.12.3 2. PHY	Sical Chemistry of noble gases	3 3
 1.12.2 1.12.3 2. PHY 2.1 Che 	 Na₂CO₃, Na, Cl₂, NaOH, chemistry of lanthanides and actinides chemistry of noble gases SICAL CHEMISTRY mical equilibria 	3 3

2.1.3	chemical equilibria expressed in terms	S
211	the relationship between equilibrium	2
2.1.4	anotanta for ideal gasos expressed in	
	different wave (concentration	
	unerent ways (concentration,	2
215	relation of aquilibrium constant and	3
2.1.5	etendered Cibbo energy	2
	standard Gibbs energy	3
2.2 Ioni	c equilibria	
2.2.1	Arrhenius theory of acids and bases	1
2.2.2	Broensted-Lowry theory, conjugated	•
	acids and bases	1
223	definition of pH	1
224	ionic product of water	1
225	relation between K and K for	
2.2.0	conjugated acids and bases	1
226	hydrolysis of salts	1
2.2.0	solubility product - definition	1
2.2.1	calculation of colubility (in water) from	'
2.2.0	solubility product	1
220	calculation of pH for weak acids from	'
2.2.9		1
2 2 10	calculation of pH for 10 ⁻⁷ mol dm ⁻³	'
2.2.10	HCL solution	2
2211	calculation of pH for multiprotic acids	2
2.2.11	calculation of pH for work acid	2
2.2.12	mixturee	2
2 2 4 2	definition of activity apofficient	3 2
2.2.13	definition of ionic strength	2
2.2.14		ა ი
2.2.10	Debye-Huckel Ionnula	ა
2.3 Elec	ctrode equilibria	
2.3.1 Elec	ctrode equilibria electromotive force (definition)	1
2.3 Elec 2.3.1 2.3.2	c trode equilibria electromotive force (definition) first kind electrodes	1 1
2.3 Elec 2.3.1 2.3.2 2.3.3	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential	1 1 1
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation	1 1 1 2
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes	1 1 2 2
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive	1 1 2 2
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force	1 1 2 2 3
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force	1 1 2 2 3
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 Kind	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force etics of homogeneous reactions	1 1 2 2 3
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 Kind	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force etics of homogeneous reactions factors influencing reaction rate	1 1 2 2 3
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 Kind 2.4.1 2.4.2	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force etics of homogeneous reactions factors influencing reaction rate rate equation	1 1 2 2 3 1
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 Kind 2.4.1 2.4.2 2.4.3	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force etics of homogeneous reactions factors influencing reaction rate rate equation rate constant	1 1 2 2 3 1 1
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 Kind 2.4.1 2.4.2 2.4.3 2.4.4	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force etics of homogeneous reactions factors influencing reaction rate rate equation rate constant order of reactions	1 1 2 2 3 1 1 2 2
 2.3 Election 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 Kine 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force etics of homogeneous reactions factors influencing reaction rate rate equation rate constant order of reactions: time dependence	1 1 2 2 3 1 1 2
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 Kine 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force etics of homogeneous reactions factors influencing reaction rate rate equation rate constant order of reactions: time dependence of concentration	1 1 1 2 2 3 1 1 1 2 2
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 Kine 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force etics of homogeneous reactions factors influencing reaction rate rate equation rate constant order of reactions: time dependence of concentration 1st order reactions: half life	1 1 1 2 2 3 1 1 1 2 2 2
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 Kine 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force etics of homogeneous reactions factors influencing reaction rate rate equation rate constant order of reactions 1st order reactions: time dependence of concentration 1st order reactions: half life 1st order reactions: relation between	1 1 1 2 2 3 1 1 1 2 2 2
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 Kind 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7 	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force etics of homogeneous reactions factors influencing reaction rate rate equation rate constant order of reactions 1st order reactions: time dependence of concentration 1st order reactions: half life 1st order reactions: relation between half-life and rate constant	1 1 1 2 2 3 1 1 1 2 2 2 2
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 Kind 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7 2.4.8 	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force etics of homogeneous reactions factors influencing reaction rate rate equation rate constant order of reactions: time dependence of concentration 1st order reactions: time dependence of concentration 1st order reactions: half life 1st order reactions: relation between half-life and rate constant rate-determining step	1 1 2 2 3 1 1 2
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 Kind 2.4 Kind 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7 2.4.8 2.4.9	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force etics of homogeneous reactions factors influencing reaction rate rate equation rate constant order of reactions: time dependence of concentration 1st order reactions: time dependence of concentration 1st order reactions: half life 1st order reactions: relation between half-life and rate constant rate-determining step molecularity	11122 3 1112 22 222
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 Kine 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7 2.4.8 2.4.9 2.4.10 	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force etics of homogeneous reactions factors influencing reaction rate rate equation rate constant order of reactions: time dependence of concentration 1st order reactions: time dependence of concentration 1st order reactions: half life 1st order reactions: relation between half-life and rate constant rate-determining step molecularity Arrhenius equation, activation energy	11122 3 1112 22 222
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 Kind 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7 2.4.8 2.4.9 2.4.10 	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force etics of homogeneous reactions factors influencing reaction rate rate equation rate constant order of reactions: time dependence of concentration 1st order reactions: time dependence of concentration 1st order reactions: half life 1st order reactions: relation between half-life and rate constant rate-determining step molecularity Arrhenius equation, activation energy (definition)	11122 3 1112 22 222 2
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 Kind 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7 2.4.8 2.4.9 2.4.10 2.4.11 	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force etics of homogeneous reactions factors influencing reaction rate rate equation rate constant order of reactions 1st order reactions: time dependence of concentration 1st order reactions: half life 1st order reactions: relation between half-life and rate constant rate-determining step molecularity Arrhenius equation, activation energy (definition) calculation of rate constant for 1st	11122 3 1112 22 222 2
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 Kine 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7 2.4.8 2.4.9 2.4.10 2.4.11 	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force etics of homogeneous reactions factors influencing reaction rate rate equation rate constant order of reactions 1st order reactions: time dependence of concentration 1st order reactions: half life 1st order reactions: relation between half-life and rate constant rate-determining step molecularity Arrhenius equation, activation energy (definition) calculation of rate constant for 1st order reaction	11122 3 1112 22 222 2 2
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 Kine 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7 2.4.8 2.4.9 2.4.10 2.4.11 2.4.12 	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force etics of homogeneous reactions factors influencing reaction rate rate equation rate constant order of reactions 1st order reactions: time dependence of concentration 1st order reactions: half life 1st order reactions: relation between half-life and rate constant rate-determining step molecularity Arrhenius equation, activation energy (definition) calculation of rate constant for 1st order reaction	11122 3 1112 22 222 2 2
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 Kind 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7 2.4.8 2.4.9 2.4.10 2.4.11 2.4.12 	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force etics of homogeneous reactions factors influencing reaction rate rate equation rate constant order of reactions 1st order reactions: time dependence of concentration 1st order reactions: half life 1st order reactions: relation between half-life and rate constant rate-determining step molecularity Arrhenius equation, activation energy (definition) calculation of rate constant for 1st order reaction calculation of rate constant for second and third order reactions	11122 3 1112 22 222 2 2 3
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 Kind 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7 2.4.8 2.4.9 2.4.10 2.4.11 2.4.12 2.4.13 	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force etics of homogeneous reactions factors influencing reaction rate rate equation rate constant order of reactions 1st order reactions: time dependence of concentration 1st order reactions: half life 1st order reactions: relation between half-life and rate constant rate-determining step molecularity Arrhenius equation, activation energy (definition) calculation of rate constant for 1st order reactions calculation of activation energy from	11122 3 1112 22 222 2 2 3
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 Kind 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7 2.4.8 2.4.9 2.4.10 2.4.11 2.4.12 2.4.13 	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force etics of homogeneous reactions factors influencing reaction rate rate equation rate constant order of reactions: time dependence of concentration 1st order reactions: time dependence of concentration 1st order reactions: half life 1st order reactions: relation between half-life and rate constant rate-determining step molecularity Arrhenius equation, activation energy (definition) calculation of rate constant for 1st order reaction calculation of activation energy from experimental data	1 1 1 2 2 3 1 1 1 2 2 2 2 2 2 3 3
 2.3 Elect 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 Kind 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7 2.4.8 2.4.9 2.4.10 2.4.11 2.4.12 2.4.13 2.4.14 	ctrode equilibria electromotive force (definition) first kind electrodes standard electrode potential Nernst equation second kind electrodes relation between ΔG and electromotive force etics of homogeneous reactions factors influencing reaction rate rate equation rate constant order of reactions 1st order reactions: time dependence of concentration 1st order reactions: half life 1st order reactions: half life 1st order reactions: relation between half-life and rate constant rate-determining step molecularity Arrhenius equation, activation energy (definition) calculation of rate constant for 1st order reactions calculation of activation energy from experimental data basic concepts of collision theory	1 1 1 2 2 2 3 1 1 1 2 2 2 2 2 2 3 3 3 3

34th International Chemistry Olympiad | Preparatory Problems

	theory	3
2.4.16	opposing, parallel and consecutive reactions	3
25 Ther	modynamics (First law)	
2.5 1	system and its surroundings	2
2.5.1	aparav boot and work	2
2.0.2	ellergy, heat and work	2
2.5.3	relation between enthalpy and energy	2
2.5.4	neat capacity - definition	2
2.5.5	difference between C_p and C_v (ideal	~
050	gas only)	2
2.5.6	Hess law	2
2.5.7	Born-Haber cycle for ionic compounds	3
2.5.8	lattice energies - approximate	
	calculations (e.g. Kapustinski equation))3
2.5.9	use of standard formation enthalpies	2
2.5.10	heats of solution and solvation	2
2.5.11	bond energies - definition and uses	2
26 Tho	rmodynamics (Second law)	
2.0 me	antranus definition (n/T)	~
2.6.1	entropy, definition (q/1)	2
2.6.2	entropy and disorder	2
2.6.3	relation $S = k \ln W$	3
2.6.4	relation $\Delta G = \Delta H - T \Delta S$	2
2.6.5	ΔG and directionality of changes	2
2.7 Pha	se systems	
2.7 Pha	se systems ideal das law	1
2.7 Pha 2.7.1	se systems ideal gas law yan dar Waals gas law	1
2.7 Pha 2.7.1 2.7.2 2.7.2	se systems ideal gas law van der Waals gas law definition of partial prossure	1 3 1
2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4	se systems ideal gas law van der Waals gas law definition of partial pressure	1 3 1
2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4	se systems ideal gas law van der Waals gas law definition of partial pressure temperature dependence of the	1 3 1
2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4	se systems ideal gas law van der Waals gas law definition of partial pressure temperature dependence of the vapor pressure of liquid	1 3 1 2
 2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.5 	se systems ideal gas law van der Waals gas law definition of partial pressure temperature dependence of the vapor pressure of liquid Clausius-Clapeyron equation	1 3 1 2 3
 2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 	se systems ideal gas law van der Waals gas law definition of partial pressure temperature dependence of the vapor pressure of liquid Clausius-Clapeyron equation reading phase diagrams: triple point	1 3 1 2 3 3
 2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.7 	se systems ideal gas law van der Waals gas law definition of partial pressure temperature dependence of the vapor pressure of liquid Clausius-Clapeyron equation reading phase diagrams: triple point phase diagrams: critical temperature	1 3 1 2 3 3 3
 2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.7 2.7.8 	se systems ideal gas law van der Waals gas law definition of partial pressure temperature dependence of the vapor pressure of liquid Clausius-Clapeyron equation reading phase diagrams: triple point phase diagrams: critical temperature liquid-vapor system (diagram)	1 3 1 2 3 3 3 3 3
 2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.7 2.7.8 2.7.9 	se systems ideal gas law van der Waals gas law definition of partial pressure temperature dependence of the vapor pressure of liquid Clausius-Clapeyron equation reading phase diagrams: triple point phase diagrams: critical temperature liquid-vapor system (diagram) liquid-vapor: ideal and non-ideal	1 3 1 2 3 3 3 3
 2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.7 2.7.8 2.7.9 	se systems ideal gas law van der Waals gas law definition of partial pressure temperature dependence of the vapor pressure of liquid Clausius-Clapeyron equation reading phase diagrams: triple point phase diagrams: critical temperature liquid-vapor system (diagram) liquid-vapor: ideal and non-ideal systems	1 3 1 2 3 3 3 3 3 3 3
 2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.7 2.7.8 2.7.9 2.7.10 	se systems ideal gas law van der Waals gas law definition of partial pressure temperature dependence of the vapor pressure of liquid Clausius-Clapeyron equation reading phase diagrams: triple point phase diagrams: critical temperature liquid-vapor system (diagram) liquid-vapor: ideal and non-ideal systems liquid-vapor: use in fractional	1 3 1 2 3 3 3 3 3 3 3 3
 2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.7 2.7.8 2.7.9 2.7.10 	se systems ideal gas law van der Waals gas law definition of partial pressure temperature dependence of the vapor pressure of liquid Clausius-Clapeyron equation reading phase diagrams: triple point phase diagrams: critical temperature liquid-vapor system (diagram) liquid-vapor: ideal and non-ideal systems liquid-vapor: use in fractional distillation	131 23333 333
 2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.7 2.7.8 2.7.9 2.7.10 2.7.11 	se systems ideal gas law van der Waals gas law definition of partial pressure temperature dependence of the vapor pressure of liquid Clausius-Clapeyron equation reading phase diagrams: triple point phase diagrams: critical temperature liquid-vapor system (diagram) liquid-vapor: ideal and non-ideal systems liquid-vapor: use in fractional distillation Henry's law	131 23333 32
 2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.7 2.7.8 2.7.9 2.7.10 2.7.11 2.7.12 	se systems ideal gas law van der Waals gas law definition of partial pressure temperature dependence of the vapor pressure of liquid Clausius-Clapeyron equation reading phase diagrams: triple point phase diagrams: critical temperature liquid-vapor system (diagram) liquid-vapor: ideal and non-ideal systems liquid-vapor: use in fractional distillation Henry's law Raoult's law	131 23333 3322
 2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.7 2.7.8 2.7.9 2.7.10 2.7.11 2.7.12 2.7.13 	se systems ideal gas law van der Waals gas law definition of partial pressure temperature dependence of the vapor pressure of liquid Clausius-Clapeyron equation reading phase diagrams: triple point phase diagrams: critical temperature liquid-vapor system (diagram) liquid-vapor: ideal and non-ideal systems liquid-vapor: use in fractional distillation Henry's law Raoult's law	131 23333 3 3223
 2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.7 2.7.8 2.7.9 2.7.10 2.7.11 2.7.12 2.7.13 2.7.14 	se systems ideal gas law van der Waals gas law definition of partial pressure temperature dependence of the vapor pressure of liquid Clausius-Clapeyron equation reading phase diagrams: triple point phase diagrams: critical temperature liquid-vapor system (diagram) liquid-vapor: ideal and non-ideal systems liquid-vapor: use in fractional distillation Henry's law Raoult's law deviations from Raoult's law bailing point deviation law	131 23333 3 32232
 2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.7 2.7.8 2.7.9 2.7.10 2.7.11 2.7.12 2.7.13 2.7.14 2.7.14 	se systems ideal gas law van der Waals gas law definition of partial pressure temperature dependence of the vapor pressure of liquid Clausius-Clapeyron equation reading phase diagrams: triple point phase diagrams: critical temperature liquid-vapor system (diagram) liquid-vapor: ideal and non-ideal systems liquid-vapor: use in fractional distillation Henry's law Raoult's law deviations from Raoult's law boiling point elevation law	131 23333 332232
 2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.7 2.7.8 2.7.9 2.7.10 2.7.10 2.7.11 2.7.12 2.7.13 2.7.14 2.7.15 	se systems ideal gas law van der Waals gas law definition of partial pressure temperature dependence of the vapor pressure of liquid Clausius-Clapeyron equation reading phase diagrams: triple point phase diagrams: critical temperature liquid-vapor system (diagram) liquid-vapor: ideal and non-ideal systems liquid-vapor: use in fractional distillation Henry's law Raoult's law deviations from Raoult's law boiling point elevation law freezing point depression,	131 23333 3 32232 0
 2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.7 2.7.8 2.7.9 2.7.10 2.7.10 2.7.11 2.7.12 2.7.13 2.7.14 2.7.15 	se systems ideal gas law van der Waals gas law definition of partial pressure temperature dependence of the vapor pressure of liquid Clausius-Clapeyron equation reading phase diagrams: triple point phase diagrams: critical temperature liquid-vapor system (diagram) liquid-vapor: ideal and non-ideal systems liquid-vapor: use in fractional distillation Henry's law Raoult's law deviations from Raoult's law boiling point elevation law freezing point depression, determination of molar mass	131 23333 3 32232 20
 2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.7 2.7.8 2.7.9 2.7.10 2.7.10 2.7.11 2.7.12 2.7.13 2.7.14 2.7.15 2.7.16 	se systems ideal gas law van der Waals gas law definition of partial pressure temperature dependence of the vapor pressure of liquid Clausius-Clapeyron equation reading phase diagrams: triple point phase diagrams: critical temperature liquid-vapor system (diagram) liquid-vapor: ideal and non-ideal systems liquid-vapor: use in fractional distillation Henry's law Raoult's law deviations from Raoult's law boiling point elevation law freezing point depression, determination of molar mass osmotic pressure	131 23333 3 32232 220
 2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.7 2.7.8 2.7.9 2.7.10 2.7.10 2.7.11 2.7.12 2.7.13 2.7.14 2.7.15 2.7.16 2.7.17 	se systems ideal gas law van der Waals gas law definition of partial pressure temperature dependence of the vapor pressure of liquid Clausius-Clapeyron equation reading phase diagrams: triple point phase diagrams: critical temperature liquid-vapor system (diagram) liquid-vapor: ideal and non-ideal systems liquid-vapor: use in fractional distillation Henry's law Raoult's law deviations from Raoult's law boiling point elevation law freezing point depression, determination of molar mass osmotic pressure partition coefficient	131 23333 3 32232 2230
 2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.7 2.7.8 2.7.9 2.7.10 2.7.10 2.7.11 2.7.12 2.7.13 2.7.14 2.7.15 2.7.16 2.7.17 2.7.18 	se systems ideal gas law van der Waals gas law definition of partial pressure temperature dependence of the vapor pressure of liquid Clausius-Clapeyron equation reading phase diagrams: triple point phase diagrams: critical temperature liquid-vapor system (diagram) liquid-vapor system (diagram) liquid-vapor: ideal and non-ideal systems liquid-vapor: use in fractional distillation Henry's law Raoult's law deviations from Raoult's law boiling point elevation law freezing point depression, determination of molar mass osmotic pressure partition coefficient solvent extraction	131 23333 3 32232 2233
 2.7 Pha 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.7 2.7.8 2.7.9 2.7.10 2.7.11 2.7.12 2.7.13 2.7.14 2.7.15 2.7.16 2.7.17 2.7.18 2.7.19 	se systems ideal gas law van der Waals gas law definition of partial pressure temperature dependence of the vapor pressure of liquid Clausius-Clapeyron equation reading phase diagrams: triple point phase diagrams: critical temperature liquid-vapor system (diagram) liquid-vapor: ideal and non-ideal systems liquid-vapor: use in fractional distillation Henry's law Raoult's law deviations from Raoult's law boiling point elevation law freezing point depression, determination of molar mass osmotic pressure partition coefficient solvent extraction basic principles of chromatography	131 23333 3 32232 22332

3. ORGANIC CHEMISTRY

3.1 Alka	anes	
3.1.1	isomers of butane	1
3.1.2	naming (IUPAC)	1
3.1.3	trends in physical properties	1
3.1.4	Substitution (e.g. with Cl ₂)	
3.1.4.1	products	1
3.1.4.2	free radicals	2
3.1.4.3	initiation/termination of the chain	
	reaction	2

3.2 Cycloalkanes

3.2.1 3.2.2 3.2.3	names strain in small rings chair/boat conformation	1 2 2
3.3 Alk	enes	
3.3.1	planarity	1
3.3.2	E/Z (cis-trans) isomerism	1
3331	products	1
3.3.3.2	Markovnikov's rule	2
3.3.3.3	carbonium ions in addition reactions	3
3.3.3.4 3.3.3.5	relative stability of carbonium ions 1,4-addition to alkadienes	3 3
3.4 Alk	ynes	
3.4.1	linear geometry	1
3.4.2	acidity	2
3.4.3	between alkenes and alkynes	3
3.5 Are	nes and heterocycles	
3.5.1	formula of benzene	1
3.5.2	stabilization by resonance	1
3.5.4	Hückel (4n + 2) rule	3
3.5.5	aromaticity of heterocycles	3
3.5.6	nomenclature of heterocycles	2
357	(IUPAC) polycyclic aromatic compounds	3
3.5.8	effect of first substituent on reactivity	2
3.5.9	effect of first substituent on direction	
3.5.10	of substitution explanation of substituent effects	2 3
2.6. U.a.		
3.6 Пак	bydrolytic reactions	2
3.6.2	exchange of halogens	3
3.6.3	reactivity (primary vs secondary vs	
204	tertiary)	2
3.6.5	side products (elimination)	2
3.6.6	reactivity (aliphatic vs aromatic)	2
3.6.7	Wurtz (RX + Na) reaction	3
3.6.8	halogen derivatives and pollution	3
3.7 Alc	ohols and phenols	
3.7.1	hydrogen bonding - alcohols vs ethers	s1
373	dehydration to alkenes	2
3.7.4	dehydration to ethers	2
3.7.5	esters with inorganic acids	2
3.7.6	iodoform reaction	2
3.7.7	reactions of primary/secondary/	2
3.7.8	formula of glycerol	1
3.8 Car	bonvl compounds	
3.8.1	nomenclature	1
3.8.2	keto/enol tautomerism	2
3.8.3	Preparation of carbonyl compounds	
3.8.3.1 3.8.3.2	oxidation of alconois	่า ว
0.0.0.2		J

3.8.4	Reaction of carbonyl compounds	
3.8.4.1	oxidation of aldehydes	1
3.8.4.2	reduction with Zn metal	2
3.8.4.3	addition of HCN	2
3.8.4.4	addition of NaHSO ₃	2
3.8.4.5	addition of NH ₂ OH	2
3.8.4.6	aldol condensation	3
3.8.4.7	preparation of acetates	2
3.8.4.8	Cannizzaro (PhCHO	
	disproportionation)	3
3849	Grignard reaction	2
38410	Eehling $(Cu_{\alpha}O)$ and Tollens	-
0.0.4.10	(Ag mirror) reagents	2
3.9 Car	boxylic acids	
3.9.1	inductive effect and strength	2
3.9.2	equivalence of oxygen atoms in	
	anions	2
3.9.3	Preparation and reactions of	
	carboxylic acids	
3.9.3.1	preparation from esters	2
3932	preparation from nitriles	2
3933	products of reaction with alcohols	-
0.0.0.0	(esters)	ર
3031	mechanism of esterification	2
2025	isotopos in mochanism elucidation	2
2026	nomanalatura of acid balidas	っ っ
3.9.3.0		2
3.9.3.7	preparation of acid chiondes	2
3.9.3.8	preparation of amides from acid	~
	chiorides	2
3.9.3.9	preparation of nitriles from acid	_
	chlorides	3
3.9.3.10	properties and preparation of	
	anhydrides	2
3.9.3.11	oxalic acid, name and formula	1
3.9.3.12	multifunctional acids (e.g. hydroxy	
	acids, keto acids)	2
3.9.3.13	polycarboxylic acids	2
3.9.3.14	optical activity (e.g. lactic acid)	2
3.9.3.15	R/S nomenclature	3
3.9.3.16	plant and animal fats, differences	2
3.10 Nit	rogen compounds	
3.10.1	basicity of amines	1
3.10.2	comparing aliphatic vs. aromatic	2
3.10.3	names: primary, secondary, tertiary,	
	quaternary amines	2
3.10.4	identification of primary/sec./tert./	
	quaternary amines in the laboratory	3
3.10.5	Preparation of amines	
3.10.5.1	from halogen compounds	2
3.10.5.2	from nitro compounds (e.g. PhNH ₂	
	from PhNO ₂)	3
31053	from amides (Hoffmann)	3
3 10 6	mechanism of Hoffmann rearrange-	U
5.10.0	ment in acidic/basic medium	З
3 10 7	hasicity aminos ve amidos	3 2
2 10 0	diazotation products of alighetic	2
5.10.0		<u>_</u>
0.40.0		3
3.10.9		~
0 40 40		3
3.10.10	ayes: color vs. structure (chromophor	e
	groups)	3

3.10.11 3.10.12	nitro compounds : aci/nitro tautomerism Beckmann (oxime - amide) rearrange ments	3 - 3
3.11 Sc	me large molecules	
3.11.1	hydrophilic/hydrophobic groups	2
3.11.2	micelle structure	3
3.11.3	preparation of soaps	1
	products of polymerization of:	
3.11.4	- styrene	2
3.11.5	- ethene	1
3.11.6	- polyamides	3
3.11.7	 phenol + aldehydes 	3
3.11.8	- polyurethanes	3
3.11.9	polymer cross linking	3
3.11.10	chain mechanism of polymer formation	۱2
3.11.11	rubber composition	3

4. BIOCHEMISTRY

4.1 Amino acids and peptides

4.1 Am	no acido and peptides	
4.1.1	ionic structure of amino acids	1
4.1.2	isoelectric point	2
4.1.3	20 amino acids (classification in	
	groups)	2
4.1.4	20 amino acids (names and	
	structures)	3
4.1.5	ninhydrin reaction (including equation))3
416	separation by chromatography	3
417	separation by electrophoresis	3
418	nentide linkage	1
4.1.0	peptide initiage	
4.2 Prot	teins	
4.2.1	primary structure of proteins	1
422	-S-S- bridges	3
423	sequence analysis	3
424	secondary structures	3
425	details of alpha-belix structure	3
426	tertiony structure	2
4.2.0	denaturation reaction by change of	5
4.2.1		S
400		2
4.2.8	quaternary structure	3
4.2.9	separation of proteins (molecule size	~
	and solubility)	3
4.2.10	metabolism of proteins (general)	3
4.2.11	proteolysis	3
4.2.12	transamination	3
4.2.13	four pathways of catabolism of	
	amino acids	3
4.2.14	decarboxylation of amino acids	3
4.2.15	urea cycle (only results)	3
4.3 Fatt	y acids and fats	
4.3.1	IUPAC names from C_4 to C_{18}	2
4.3.2	trivial names of most important (ca. 5)	
	fatty acids	2
4.3.3	general metabolism of fats	2
4.3.4	beta-oxidation of fatty acids (formulae	
	and ATP balance)	3
4.3.5	fatty acids and fats anabolism	3
4.3.6	phosphoglycerides	3
-	,	

34th International Chemistry Olympiad | Preparatory Problems

4.3.7	membranes	3		
4.3.8	active transport	3		
4.4 Enz	vmes			
441	general properties active centres	2		
442	nomenclature kinetics coenzymes	2		
4.4.2	function of ATD oto	2		
		3		
4 5 0	a harida a			
4.5 Sac	charides			
4.5	Glucose and fructose:	~		
4.5.1	- chain formulas	2		
4.5.2	- Fischer projections	2		
4.5.3	- Haworth formulas	3		
4.5.4	osazones	3		
4.5.5	maltose as reducing sugar	2		
4.5.6	difference between starch and			
	cellulose	2		
457	difference between alpha- and	~		
4.0.7	bota D glucoso	2		
4 5 0	metabolism from storeb to post d Co A	2		
4.5.6	metabolism from starch to acety-CoA	3		
4.5.9	pathway to lactic acid or to ethanol,	~		
	catabolism of glucose	3		
4.5.10	ATP balance for the above pathways	3		
4.5.11	photosynthesis (products only)	2		
4.5.12	light and dark reaction	3		
4.5.13	detailed Calvin cycle	3		
	-			
4.6 Krel	bs cycle and respiration chain			
461	formation of CO_2 in the cycle (no			
	details)	3		
162	intermediate compounds in the cycle	3		
4.6.2	formation of water and ATP (no	0		
4.0.5	detaile)	2		
101		3		
4.6.4	Finin and cytochromes	3		
4.6.5	calculation of ATP amount for 1 mole	_		
	of glucose	3		
4.7 Nuc	leic acids and protein synthesis			
4.7.1	pyrimidines, purines	2		
4.7.2	nucleosides and nucleotides	3		
4.7.3	formulae of all pyrimidine and purine			
	bases	3		
4.7.4	difference between ribose and			
	2-deoxyribose	3		
475	base combination CG and AT	3		
4.7.6	base combination CC and AT	0		
4.7.0	(bydrogon bonding structure)	2		
4 7 7	(Hydrogen bonding Structure)	3		
4.7.7	difference between DNA and RNA	3		
4.7.8	difference between mRINA and tRINA	3		
4.7.9	hydrolysis of nucleic acids	3		
4.7.10	semiconservative replication of DNA	3		
4.7.11	DNA-ligase	3		
4.7.12	RNA synthesis (transcription) without			
	details	3		
4.7.13	reverse transcriptase	3		
4.7.14	use of genetic code	3		
4715	start and stop codons	3		
4716	translation steps	3		
		0		
1.8 Other biochemical problems				
181	hormones regulation	2		
+.U.I 100	hormonoo, foodback	ა ი		
4.0.∠ 4.0.0		ა ი		
4.8.3	insuin, giucagon, adrenaline	3		

4.8.4	mineral metabolism (no details)	3
4.8.5	ions in blood	3
4.8.6	buffers in blood	3
4.8.7	haemoglobin; function and skeleton	3
4.8.8	haemoglobin; diagram of oxygen	
	absorption	3
4.8.9	steps in clotting the blood	3
4.8.10	antigens and antibodies	3
4.8.11	blood groups	3
4.8.12	acetyl choline, structure and functions	3

OTHER PROBLEMS

5. Analytical chemistry

pice of indicators for acidimetry	1
ation curve; pH (strong and weak	
d)	2
IF (redox titration)	2
culation of pH of simple buffer	
ution	2
ntification of Ag^+ , Ba^{2+} , CI^- , SO_4^{2-}	1
ntification of Al^{3+} , NO_2^{-} , NO_3^{-} , Bi^{3+}	2
ntification of VO_3^- , CIO_3^- , Ti^{4+}	3
e of flame tests for identification of	
Ca and Sr	1
mbert -Beer law	2
es	
es ting down complexation reactions	1
es ting down complexation reactions inition of coordination number	1 1
es ting down complexation reactions inition of coordination number ediction of coordination number of	1 1
es ting down complexation reactions inition of coordination number ediction of coordination number of mplex ions and molecules	1 1 3
es ting down complexation reactions inition of coordination number ediction of coordination number of nplex ions and molecules mplex formation constants	1 1 3
es ting down complexation reactions inition of coordination number ediction of coordination number of mplex ions and molecules mplex formation constants efinition)	1 1 3 2
es ting down complexation reactions inition of coordination number ediction of coordination number of mplex ions and molecules mplex formation constants ifinition) and T_{2n} terms: high and low spin	1 1 3 2
es ting down complexation reactions inition of coordination number ediction of coordination number of mplex ions and molecules mplex formation constants finition) and T_{2g} terms: high and low spin ahedral complexes	1 1 3 2 3
es ting down complexation reactions inition of coordination number ediction of coordination number of mplex ions and molecules mplex formation constants efinition) and T_{2g} terms: high and low spin ahedral complexes culation of solubility of AgCl in NH ₃	1 1 2 3
ting down complexation reactions inition of coordination number ediction of coordination number of mplex ions and molecules mplex formation constants of T_{2g} terms: high and low spin ahedral complexes culation of solubility of AgCl in NH ₃ om K_{s} and constants β)	1 1 2 3 3
	ation curve; pH (strong and weak d) IF (redox titration) culation of pH of simple buffer ution ntification of Ag^+ , Ba^{2+} , Cl ⁻ , $SO_4^{2^-}$ ntification of Al^{3+} , NO_2^- , NO_3^- , Bl^{3+} ntification of VO_3^- , ClO_3^- , Tl^{4+} e of flame tests for identification of Ca and Sr mbert -Beer law

7. Theoretical chemistry

71	energy levels of hydrogen atom	
	(formula)	2
7.2	square of the wave function and	
	probability	3
7.3	understanding the simplest	
	Schrödinger equation	3
7.4	n, l, m quantum numbers	2
7.5	shape of p-orbitals	2
7.6	d-orbital stereoconfiguration	3
7.7	molecular orbital diagram: H ₂ molecule	2
7.8	molecular orbital diagram: N ₂ and O ₂	
	molecules	3
7.9	bond orders in O_2, O_2^+, O_2^-	3
7.10	unpaired electrons and	
	paramagnetism	2
7.11	Hückel theory for aromatic compounds	3
7.12	Lewis acids and bases	2
7.13	hard and soft Lewis acids	3

8. Instrumental methods of determining structure			8.4.2 8.4.3	(like ethanol) spin-spin coupling coupling constants	3 3 3
8.1 UV- 8.1.1 8.1.2	VIS spectroscopy identification of aromatic compound identification of chromophores	3 3	8.4.4 8.4.5	identification of <i>o</i> - and <i>p</i> - substituted benzene ¹³ C- NMR	3 3
8.2 Mas 8.2 8.2.1 8.2.2 8.2.2	ss spectra recognition of: - molecular ions - fragments with the help of a table typical isotope distribution	3 3 3	8.5 X-r 8.5.1 8.5.2 8.5.3 8.5.4	ays Bragg's law electron density diagram coordination number unit cell	3 3 3 3
8.3.1 8.3.2 8.3.3	ared spectra interpretation using a table of group frequencies recognition of hydrogen bonds Raman spectroscopy	3 3 3	8.5.5 8.5.6 8.5.7 8.5.8	structures: - of NaCl - of CsCl - close-packed (2 types) determining of the Avogadro constant from X-ray data	3 3 3 3
8.4 NM 8.4.1	R interpretation of a simple spectrum		8.6 Po 8.6.1	larimetry calculation of specific rotation angle	3

Syllabus for the experimental part of the IChO competition

Level 1 is assigned to the basic experimental activities which are supposed to be mastered very well by competitors.

Level 2 is assigned to the activities which are parts of school experimental exercises in developed countries and the authors of IChO tasks may incorporate them into the tasks without being bound to mention it in advance.

Level 3 is assigned to such activities which are not in the chemistry syllabus in the majority of participating countries and the authors are obliged to mention them in the set of preparatory tasks.

2

2

3 2 2

2

1.	Synthesis of inorganic and organic compounds		1.17	normal pressure apparatus for distillation of liquids at	2
1.1	heating with burners and hotplates	1		reduced pressure	3
1.2	heating of liquids	1	1.18	apparatus for steam distillation	3
1.3	handling of inflammable substances		1.19	filtration through flat paper filter	1
	and materials	1	1.20	filtration through a folded paper filter	1
1.4	measuring of masses (analytical		1.21	handling a water vacuum pump	1
	balance)	1	1.22	filtration through a Büchner funnel	1
1.5	5 measuring of volumes of liquids		1.23	suction through a glass filter	1
	(measuring cylinder, pipette, burette)	1	1.24	washing of precipitates by decantation	1
1.6	6 preparation of solutions from a solid		1.25	washing of precipitates on a filter	2
	compound and solvent	1	1.26	drying of precipitates on a filter with	
1.7	' mixing and dilution of solutions	1		appropriate solvents	2
1.8	8 mixing and stirring of liquids	1	1.27	recrystallization of substances from	
1.9	9 using mixer and magnetic stirrer	2		aqueous solution	1
1.1	0 using a dropping funnel	1	1.28	recrystallization of substances from a	
1.1	1 syntheses in flat bottom vessels -			known organic solvent	2
	general principles	1	1.29	practical choice of an appropriate	
1.1	2 syntheses in round bottom vessels -			solvent for recrystallization of a	
	general principles	1		substance	3
1.1	3 syntheses in a closed apparatus -		1.30	drying of substances in a drying box	2
	general principles	1	1.31	drying of substances in a desiccator	2
1.1	4 using micro scale equipment for		1.32	connecting and using a gas washing	
	synthesis	3		bottle	2
1.1	5 apparatus for heating of a reaction		1.33	extraction with an immiscible solvent	1
	mixture under reflux	2			
1.1	6 apparatus for distillation of liquids at				

2. Identification of inorganic and organic compounds - general principles

comp	ounus - general principies	
2.1	test-tube reactions	1
2.2	technique of reactions performed in a	
	dot dish and on a filter paper	1
2.3	group reactions of some cations and	
	anions specified by the organizer	2
2.4	selective reactions of some cations	
	and anions specified by the organizer	2
2.5	specific reactions of some cations	
	and anions specified by the organizer	3
2.6	identification of elements by flame	
	coloration (using a platinum wire/	
	MgO rod, Co-glass)	2
2.7	using a hand spectroscope/Bunsen	
	spectroscope	3
2.8	melting point determination with	_
	Kofler or similar type of apparatus	3
2.9	qualitative evidence of basic functiona	I
	groups of organic substances specifie	d
0.40	by the organizer	2
2.10	exploitation of some specific reactions	
	for identification of organic compounds	3
	(specified by the organizer)	3
3. Deter organ	mination of some inorganic and ic compounds - general principles	

Ulgan	ne compounds - general principles	
3.1	quantitative determinations using	
	precipitation reactions	2
3.2	igniting of a precipitate in a crucible	1
3.3	quantitative volumetric determinations	1
3.4	rules of titrations	1
3.5	use of a pipetting ball	1
3.6	preparation of a standard solution	2
3.7	alkalimetric and acidimetric	

determinations 2 color transitions of indicators at alkali-3.8 metric and acidimetric determinations 2 3.9 direct and indirect determinations 3 (back titration) 3.10 manganometric determinations 3 3.11 iodometric determinations 3 3.12 other types of determinations on basis of redox reactions 3 3.13 complexometric determinations 3 3.14 color transitions of solutions at 3 complexometric determinations 3.15 volumetric determinations on basis 3 of precipitation reactions thermometric titration 3.16 3 4. Special measurements and procedures 2 4.1 measuring with a pH-meter 4.2 chromatography on thin layers 3 4.3 column chromatography 3 4.4 separation on ion exchanger 3 4.5 measuring of UV-VIS absorbances with a spectral photometer 3 4.6 performing of conductivity 3 measurements

5. Evaluation of results

5.1	Estimation of experimental errors			
	(significant figures, plots scales)	1		

6. If the organizer wants to apply a technique which is not mentioned in the above syllabus, this technique is set to level 3 automatically.

Theoretical Problems

Important general remark:

The task "calculate" implies that equation(s), formula(s), number(s), etc., and the way that has been followed to arrive at the answer, must be given!

Problem 1 Production of Ammonia

Ammonia is an important commodity chemical used for the manufacture of the fertilizer urea and many other products. The production of ammonia takes place according to the equilibrium reaction:

 $N_2 + 3 H_2 \stackrel{\rightarrow}{\leftarrow} 2 NH_3$

The hydrogen in the ammonia plant is obtained from methane and water by the reaction:

 $CH_4 + H_2O \rightarrow CO + 3 \ H_2$

Nitrogen is taken from air, whereby oxygen is removed by the reaction with CO as follows:

 $O_2 + 2 \text{ CO} \rightarrow 2 \text{ CO}_2$

In air the nitrogen content is 80%. The reactions are performed in a catalytic reactor, the diagram of which is shown below. The respective flows are numbered in the arrows.

Assume that the reactants are converted completely. Take as flow for ammonia at position ^(®): $n [NH_3, [®] = 1000 \text{ mol s}^{-1}$.

1-1 <u>Calculate</u> the following flows in the plant in mol s⁻¹ $n[H_2, @]$, for hydrogen at position @ $n[N_2, @]$, for nitrogen at position @ $n[CH_4, @]$, for methane at position @ $n[H_2O, @]$, for water at position @n[CO, @], for CO at position @ $n[O_2, @]$, for oxygen at position @n[CO, ©], for CO at position ©

In real practice the ammonia formation is an equilibrium reaction, converting only a part of the reactants. The ammonia unit thus must be equipped with a separator and a recycle unit, as shown below.

Suppose the recycle of $N_2 + H_2$ that leaves the separator is two times the NH₃ flow.

1-2 Calculate the flow of N₂ at position \overline{O} and the flow of H₂ at position \overline{O} .

At a temperature T = 800 K, the Gibbs energies of the three gases are:

 $\begin{array}{rcl} G \ ({\sf N}_2) &=& -8.3 \ x \ 10^3 \ {\sf J} \ {\sf mol}^{-1} \\ G \ ({\sf H}_2) &=& -8.3 \ x \ 10^3 \ {\sf J} \ {\sf mol}^{-1} \\ G \ ({\sf N}{\sf H}_3) &=& 24.4 \ x \ 10^3 \ {\sf J} \ {\sf mol}^{-1} \end{array}$

- **1-3** <u>Calculate</u> the change in the Gibbs energy (ΔG_r) for the conversion of one mole of N₂.
- **1-4** Calculate the equilibrium constant K_r for the NH₃ formation, using ΔG_r (see 1-3). The gas constant equals to: $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$

Equilibrium constants can also be expressed in partial pressures of the reactants, thus:

$$K_r = \frac{p^2 N H_3 p_0^2}{p_{N_2} p^3 H_2}$$

The partial pressure of ammonia at position \overline{O} is a fraction *x* of the total pressure:

 $p_{\rm NH_2} = x \, p_{\rm tot}$, whereby x is also expressed by the flow ratio $n_{_{NH_2}}/n_{_{tot}}$

- **1-5** Derive the equations for the partial pressures p_{N_a} and p_{H_a} at position \mathcal{O} .
- **1-6** Insert the partial pressures in K_r and simplify the formula thus obtained as much as possible.
- **1-7** Calculate x when $p_0 = 0.1$ Mpa and $p_{tot} = 30$ Mpa. (Hint: K_r has been calculated in **1-4**)

Problem 2 Myoglobin for Oxygen Storage

Myoglobin (Mb) is a protein containing a heme (iron) group. Myoglobin is an enzyme that allows storage of oxygen. Each myoglobin molecule can reversibly bind one oxygen molecule according to the equation:

$$Mb + O_2 \rightleftharpoons MbO_2$$

This oxygen storage is important for diving animals such as whales. We are going to investigate how whales use it.

The fraction of Mb that is bound to oxygen increases with the oxygen concentration as:

$$Y = \frac{c_{O_2}}{c_{O_2} + K_c}$$
, wherein K_c is a constant

Oxygen is only slightly soluble in water: the amount that dissolves is proportional to the oxygen pressure:

$$c_{O_2} \propto p_{O_2}$$

The fraction of Mb bound is then related to the oxygen pressure by:

$$Y = \frac{p_{O_2}}{p_{O_2} + K_p}$$
, wherein K_p is a constant

The graph below is showing this relation (the scale of the graph is logarithmic!)

2-1 Determine the value and the unit of the constant K_{0} in the formula above (use the graph).

The Mb molecule has the dimensions of $4.5 \times 3.5 \times 2.5$ nm meaning that Mb fits in a box with these dimensions. Because the molecule is roughly elliptical in shape it will have a volume of about one half of the volume of the box. Proteins have a density of about 1400 kg m⁻³. The Avogadro number is $N_A = 6.02 \times 10^{23}$ mol⁻¹.

2-2 <u>Estimate</u> the molar mass of Mb.

Whales obtain their oxygen by breathing air. They can stay under water for a long time using their oxygen storage. Assume that 20% of the mass of their muscular tissues consists of myoglobin.

2-3 <u>Calculate</u> how many moles of oxygen the whale can store per kilogram of tissue.

Oxygen is used to produce energy (heat and motion) by burning fat. The overall equation can be approximated by:

$$(CH_2)_n + 1.5nO_2 \longrightarrow nCO_2 + nH_2O$$

The energy released by this type of reaction is about 400 kJ per mole of oxygen. A large animal, such as a whale, needs to dissipate about 0.5 W per kg of mass of muscle tissue to stay warm and keep moving.

2-4 <u>Calculate</u> how long the whale can stay under water.

2-5 <u>Give</u> the equation for the burning of a real fat molecule:

Problem 3 Lactose Chemistry

Lactose (milk sugar) is produced on a fairly large scale in The Netherlands starting from whey (a byproduct of cheese manufacture). Lactose is applied in baby food and in pharmaceutical tablets. It is a disaccharide composed of the monosaccharides D-galactose and D-glucose. The structure is shown below (Haworth projection). The left hand monosaccharide unit is D-galactose.

D-galactose	D-glucose
Answer box	Answer box

The acid-catalysed hydrolysis of lactose gives D-galactose and D-glucose.

3-2 <u>Indicate</u> with an arrow in the formula of lactose:

(a) To which oxygen atom a proton will be attached in order to effect hydrolysis.
(b) Which carbon-oxygen bond will be cleaved during the hydrolysis reaction.
(c) Which carbon atom will be involved in the reaction with Fehling's reagent (this reagent is used to detect reducing sugars).

The hydrolysis of lactose can be coupled with hydrogenation using a metal catalyst which leads to the polyalcohols sorbitol and galactitol, also known as glucitol and dulcitol, respectively.

3-3 Draw Fischer projections of sorbitol and galactitol. Indicate whether these compounds are optically active or inactive.

Sorbitol	Galactitol
Optically active: yes / no	Optically active: yes / no
hewer hox	Answerbox

Answer box

Answer box

In industrial processes lactose is isomerised to lactulose, which is an intestinal pharmaceutical. Hydrogenation of lactose leads to lactitol, a C_{12} -polyol which is a low-calorific sweetener. Both processes are executed in The Netherlands.

(a) <u>Draw</u> the Haworth structure of lactulose.
 (Hint: the glucose part of lactose has been isomerised to the keto-sugar fructose).

(b) <u>Draw</u> the Haworth structure of	lactitol.
Lactulose	Lactitol
Lactulose	Lactitol

Answer box (a)

Answer box (b)

Problem 4 Atom Mobility (Dynamics) in Organic Compounds

For the study of reaction mechanisms in organic chemistry isotopic labelling, e.g. with ²H or ¹⁷O, can give valuable information. Modern NMR techniques are able to 'see' deuterium ²H and the oxygen isotope ¹⁷O. As an example, the introduction of isotopic labels in 4-hydroxybutan-2-one is considered.

a, b, c, d are hydrogen atoms, x, y are oxygen atoms and m is a carbon atom.

- **4-1** The substrate is treated with ${}^{2}H_{2}O$ at pH = 10. <u>Rank</u> the order of exchange (introduction) of deuterium atoms (${}^{2}H$) from first to last. First \Box \Box \Box last.
- **4-2** Similarly, the substrate is treated with $H_2^{17}O$ at pH = 10. <u>Rank</u> the order of introduction of ¹⁷O from first to last. First \Box \Box last.
- **4-3** Do you consider the exchange method appropriate for the introduction of a ${}^{13}C$ at position **m**, yes or <u>no</u>?

Problem 5 Towards Green Chemistry: The E-factor

The well being of modern society is unimaginable without the myriad of products of industrial organic synthesis, from pharmaceuticals combating diseases or relieving pain, to synthetic dyestuffs for aesthetic appeal. The flip side of the coin is that many of these processes generate substantial amounts of waste. The solution is not less chemistry but alternative, cleaner technologies that minimize waste. In order to evaluate the environmental (un)friendliness of a process, the terms "atom utilization" and "the *E*-factor" were introduced. The atom utilization is obtained by dividing the molar mass of the desired product by the sum of the molar masses of all substances produced according to the reaction equations. The *E*-factor is the amount (in kg) of by-products per kg of product.

Methyl methacrylate is an important monomer for transparent materials (Plexiglas).

Classical route

$$\begin{array}{c} O \\ + HCN \end{array} \rightarrow \begin{array}{c} OH \\ CN \end{array} \begin{array}{c} CH_{3}OH \\ H_{2}SO_{4} \end{array} \begin{array}{c} CO_{2}CH_{3} \\ + NH_{4}HSO_{4} \end{array}$$

Modern route

$$CH_3C\equiv CH + CO + CH_3OH \xrightarrow{catalyst} CO_2CH_3$$

Figure 1: Methyl methacrylate synthesis

5-1 <u>Calculate</u> the atom utilization and the *E*-factor for both processes. The classical and a modern process for methyl methacrylate manufacture are shown in Figure 1.

Another example is the manufacture of ethene oxide (see Figure 2). The classical route produces calcium chloride. Moreover, 10% of the ethene is converted into 1,2-ethanediol by hydrolysis. In the modern direct route a silver catalyst is applied. Here, 15% of the ethene is oxidized to carbon dioxide and water.

Classical chlorohydrin route

 $H_{2}C=CH_{2}$ + CI_{2} + H_2O CICH₂CH₂OH + HCI HCI $CICH_2CH_2OH + Ca(OH)_2$ 2H₂O $CaCl_2$ + Overall: C_2H_4 + CI_2 + $Ca(OH)_2$ CaCl₂ C_2H_4O H₂O Mol. wt. 44 111 18

Modern petrochemical route

$$H_2C = CH_2 + \frac{1}{2}O_2 \xrightarrow{\text{catalyst}} H_2C = CH_2$$

Figure 2: Ethene oxide synthesis

5-2 <u>Calculate</u> the atom utilization and *E*-factor for both processes.

Problem 6 Selective Solubility

Solubility is an important factor for the measurement of the environmental pollution of salts. The solubility of a substance is defined as the amount that dissolves in a given quantity of solvent to form a saturated solution. This solubility varies greatly with the nature of the solute and the solvent, and the experimental conditions, such as temperature and pressure. The pH and the complex formation also may have influence on the solubility.

An aqueous solution contains BaCl₂ and SrCl₂ both in a concentration of 0.01 M. The question is whether it will be possible to separate this mixture completely by adding a saturated solution of sodium sulfate. The criterion is that at least 99.9% of the Ba²⁺ has precipitated as BaSO₄ and that SrSO₄ may be contaminated with no more than 0.1 % BaSO₄. The solubility product constants are as follows: $K_{sp}(BaSO_4) = 1 \times 10^{-10}$ and $K_{sp}(SrSO_4) = 3 \times 10^{-7}$.

6-1 <u>Give</u> the relevant equations. <u>Calculate</u> the residual concentration of Ba^{2+} . <u>Calculate</u> the percentage of Ba^{2+} and Sr^{2+} in the separated substances. Complex formation may have a profound effect on the solubility. A complex is a charged species consisting of a central metal ion bonded to one of more ligands. For example $Ag(NH_3)_2^+$ is a complex containing Ag^+ as the central ion and two NH_3 molecules as ligands.

The solubility of AgCl in water is 1.3×10^{-5} M.

The solubility product constant of AgCl is 1.7×10^{-10} .

The equilibrium constant for the formation of the complex (K_i) has a value of 1.5 x 10⁺⁷.

6-2 <u>Show by calculation</u> that the solubility of AgCl in 1.0 M aqueous ammonia is higher than in pure water.

Problem 7 UV-spectrometry as an Analytical Tool

UV-spectrometry is frequently used to determine the concentration of a substance in solution by measuring the UV absorbance at a certain wavelength of either visible or ultraviolet light. The law of Lambert and Beer states that the absorbance is directly proportional to the concentration in moles per litre at a given wavelength: $A = \varepsilon c I (\varepsilon is the molar absorptivity or the extinction coefficient in L mol⁻¹ cm⁻¹, the path length in cm, <math>A = {}^{10}\log I_0/I$).

Here the maximal and minimal concentration that can be measured for the redox concentration Fe(II) fenanthroline (ferroin) will be considered. (λ_{max} = 512 nm, ε = 10500 L mol⁻¹ cm⁻¹).

- **7-1** <u>Calculate</u> the lowest concentration of ferroin that can be measured in a 1 cm cuvet at 512 nm, if a 2% difference in light intensity still can be measured.
- **7-2** <u>Calculate</u> the highest concentration of ferroin that can be measured in a 1 cm cuvet at 512 nm, if at least 2% of the incident light must reach the detector.

The composition of a complex between a metal M and a ligand L can also be determined spectrometrically, using the method of Continuous Variation, also known as Job's method, whereby the sum of the molar concentrations of M and L is kept constant as their ratio is varied. The following graph of absorbance vs. mol fraction for a complex is given, whereby the mol fraction $x_{\rm M} = c_{\rm M} / (c_{\rm M}+c_{\rm L})$ is varied. (measurement at 552 nm).

- 7-3 <u>Determine</u> the composition of the complex and show your calculation.
- **7-4** Which compounds absorb at $x_{M} = 0$? Which compounds absorb at $x_{M} = 1$? Show how you derive your answer.
- 7-5 <u>Calculate</u> the ratio of the extinction coefficients of M and L.
- **7-6** Calculate the percentage of the incident light that has been transmitted through the solutions belonging to $x_{\rm M} = 0$ and $x_{\rm M} = 1$, respectively.

Problem 8 **Reaction Kinetics**

The study of reaction kinetics provides essential information about details of chemical reactions. Here the formation of NO and its reaction with oxygen is considered. The formation of NO takes place according to the equation:

 $2 \text{ NOCI } (g) \longrightarrow 2 \text{ NO} (g) + \text{Cl}_2 (g)$

The rate constant k is 2.6 x 10^{-8} L mol⁻¹ s⁻¹ at 300K and 4.9 x 10^{-4} L mol⁻¹ s⁻¹ at 400K. The gas constant $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$

8-1 Calculate the activation energy for the NO formation using the Arrhenius equation.

The reaction of NO with oxygen is as follows: $2 \text{ NO}(g) + O_2(g) \longrightarrow 2 \text{ NO}_2(g)$. The proposed mechanism for this reaction is given below.

NO (g) + O₂ (g) $\stackrel{k_1}{\underset{k_1}{\longleftarrow}}$ NO₃ (g) fast equilibrium NO₃ (g) + NO (g) $\xrightarrow{k_2}$ 2 NO₂ (g) rate limiting step

8-2 Give the rate equation for the NO₂ formation on basis of this mechanism.

Experimentally, the rate equation reads $s = k [NO]^2 [O_2]$.

8-3 Which conclusion do you draw:

- The proposed mechanism is incorrect.
- The proposed mechanism is correct.
- The experiment is non-conclusive.

(Mark the correct answer).

Problem 9 Bonding and Bond Energies

A number of processes with salts and crystals can be understood by estimating the energies involved with a simple ionic model in which the ions have a specific radius and a charge equal to an integer number times the elementary charge. This model is used to describe the dissociation of ionic molecules in the gas phase. Such dissociations usually lead directly to neutral atoms, but the dissociation energy can be calculated by assuming a hypothetical reaction path which involves dissociation to free ions, followed by neutralization of the ions. This is the Born-Haber cycle.

The bonding energies, electron affinity and ionisation energies of the following diatomic species have been measured:

Bonding energy NaCl	= - 464 kJ mol ⁻¹	Electron affinity Cl	= - 360 kJ mol ⁻¹
Bonding energy KCI	= - 423 kJ mol ⁻¹	Ionisation energy Na	= 496 kJ mol ⁻¹
Bonding energy MgCl	= - 406 kJ mol ⁻¹	1 st Ionisation energy Ca	= 592 kJ mol ⁻¹
Bonding energy CaCl	= - 429 kJ mol ⁻¹	2 nd Ionisation energy Ca	= 1148 kJ mol ⁻¹

- Design a Born-Haber cycle for the dissociation of NaCl into neutral atoms and calculate the 9-1 dissociation energy of NaCl. Assume that the bonding is completely (100%) ionic in nature.
- Design a Born-Haber cycle for the dissociation of CaCl₂ into three neutral atoms and calculate 9-2 the dissociation energy of CaCl₂, assuming that the bond length in the triatomic species is 9% shorter than in the diatomic species.